IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

PATENT NO.: 7,124,289

ISSUED: October 17, 2006

FOR: AUTOMATED PROVISIONING FRAMEWORK FOR
INTERNET SITE SERVERS

ATTACHMENT TO FORM PTO-1465
REQUEST FOR EX PARTE REEXAMINATION

SIR:

The Public Patent Foundation (“PUBPAT”), a not-for-profit public service organization that
works to protect the public from the harms caused by wrongly issued patents and unsound patent
policy, respectfully requests ex parte reexamination under 35 U.S.C. §§ 302 — 307 and
37 C.E.R. § 1.510 of every claim of United States Patent No. 7,124,289 issued October 17, 2006 to
Raymond E. Suorsa (“the *289 patent”) and assigned to Opsware Inc. (“Opsware”) because they
are all invalid under 35 U.S.C. § 102 and § 103 and their existence is causing significant public
harm. Appendix A contains a copy of the ‘289 patent, and the other documents referred to

below.

THE ‘289 PATENT IS CAUSING SIGNIFICANT PUBLIC HARM

The ‘289 patent claims methods for automatically configuring or installing software on a
plurality of computing devices having different respective sets of software and/or configurations
of operating parameters. When Opsware announced the issuance of their patent, Ben Horowitz,

CEO of Opsware, was quoted as commenting, with respect to the ‘289 patent: “This patent

Request for Reexamination of U.S. Patent No. 7,124,289 Page 2

solidifies and protects the work we’ve done to greatly advance the automation of data centers.”
(See http://home.businesswire.com/portal/site/opsware/index.jsp?ndmViewld=news_view&news

1d=20061113005296).

The work that Opsware claims to have done, however, may be found in publicly available
references, including open source software projects that are directed to configuration and
installing software on computers, and that were available and in public use in the United States
more than a year before the filing date of the ‘289 patent. Moreover, the ‘289 patent may impact
the developers and users of open source projects, including: Cfengine (available at
http://www.gnu.org/software/cfengine/); LCFG (available at http://www.lcfg.org); Quattor
(www.quattor.org); and BCFG (available at http://trac.mcs.anl.gov/projects/bcfg2). Individuals,
non-profit organizations, educational institutions, and businesses throughout the United States
rely on these open source software tools to manage their computers. The technology claimed in
the ‘289 is not the work of the inventor named in the ‘289 patent, but rather, is the work of open

source developers, who have provided their code for the benefit of the public good.

Although this issue is not grounds to grant this request for reexamination, PUBPAT
respectfully requests that it be considered when determining whether the validity of the ‘289

patent as issued merits review by your office.

THE SUBSTANTIAL NEW QUESTIONS OF PATENTABILITY

The first substantial new question of patentability raised by this request is whether claims 1
through 28 of the ‘289 patent were anticipated under 35 U.S.C. § 102 by or were obvious under
35 U.S.C. § 103 in light of a paper published in September 1994, in the USENIX LISA
conference proceedings, entitled “Towards a High-Level Machine Configuration System,” by
Paul Anderson, available from http://www.usenix.org/publications/library/proceedings/lisa94/

anderson.html (“Anderson”).

A detailed explanation of the pertinency and manner of applying Anderson to each of the
claims 1 through 28 of the ‘289 patent is set forth below. A copy of Anderson is attached. With

respect to some of the dependent claims of the ‘289 patent, reference is made to three additional

Request for Reexamination of U.S. Patent No. 7,124,289 Page 3

documents that demonstrate that certain features are inherent in or obvious from Anderson,
specifically, a June 1999 description of the XML-RPC protocol, entitled “XML-RPC
Specification,” by Dave Winer, available from http://www.xmlrpc.com/spec (“Winer”), and a
1992 paper that describes the NIS protocol, Hess et al., “A Unix Network Protocol Security
Study: Network Information Service,” Technical Report, A&M University, 1992, available from
http://citeseer.ist.psu.edu/12427.html (“Hess”), as well as a 1994 paper that was presented at the
same USENIX LISA conference as Anderson, describing the OMNICONF system: Imazu
Hideo, “OMNICONF- Making OS Upgrades and Disk Crash Recovery Easier,” LISA VIII
Proceedings, 1994 (http://www.usenix.org/publications/library/proceedings/lisa94/hideyo.html).

A second substantial new question of patentability raised by this request is whether claims
1 through 28 of the ‘289 patent were anticipated under 35 U.S.C. § 102 by or were obvious under
35 U.S.C. § 103 in light of a paper published in September 1996, in the USENIX LISA
conference proceedings, entitled “Automating the Administration of Heterogeneous LANS,” by
Michael Fisk (“Fisk™”). A detailed explanation of the pertinency and manner of applying Fisk to
each of the claims 1 through 28 of the ‘289 patent is set forth below. A copy of Fisk is attached.
With respect to some of the dependent claims of the ‘289 patent, reference is made to two
additional documents that demonstrate that certain features are inherent in or obvious from Fisk,

specifically, Winer and Hideo.

A third substantial new question of patentability raised by this request is whether claims 1-
28 of the ‘289 patent were rendered obvious under 35 U.S.C. § 103 by U.S. Patent No. 6,009,274
to Fletcher et al. (“Fletcher”) and U.S. Patent No. 6,138,153 to Collins, III et al. (“Collins™) in
light of Anderson. While Fletcher and Collins were of record during prosecution of the ‘289
patent, this is a new question of patentability because Anderson was not of record when Fletcher
and Collins were considered. Anderson demonstrates the claim elements that the Examiner

apparently believed were not shown in Fletcher.

Request for Reexamination of U.S. Patent No. 7,124,289 Page 4

FIRST SUBSTANTIAL NEW QUESTION OF PATENTABILITY:

ANDERSON ANTICIPATES THE ‘289 PATENT

The ‘289 patent’s application date is October 31, 2000. Anderson was published in 1994,

more than one year before the ‘289 patent’s application date. Anderson is prior art to the ‘289

patent under 35 U.S.C. § 102 (b). The Anderson reference describes the open source lcfg

configuration system, which Anderson developed. The chart below sets forth an element-by-

element comparison of claims 1-28 of the ‘289 patent to Anderson. In essence, every element of

each claim of the ‘289 patent was expressly taught or obvious in light of Anderson. As such,

each claim of the 289 patent is invalid and should be canceled.

‘289 PATENT

ANDERSON

1. A method for automatically
configuring software on a
plurality of computing devices
having different respective sets of
software and/or configurations of
operating parameters, to enable
said devices to perform
predetermined operations,
comprising the steps of:

Anderson was directed to automatically configuring software on a number of
different devices having different sets of software and configurations of
operating parameters.

The Abstract describes configuration of multiple machines:

“This paper presents a machine configuration system which stores all
configuration parameters in a central ‘‘database’.... A permanent record of
every machine configuration is always available” P. 19.

The Anderson Introduction section describes setting configuration parameters:
“When a new machine is installed, it will rarely be used with the default
configuration supplied by the vendor of the operating system. The partitioning
and allocation of space on the disks, the software packages to be carried, and
the network name and address are typical configuration parameters that will be
set differently by different sites and for different machines at the same site.”
P.19

Anderson teaches the use of “lcfg” on different platforms (from Sun, DEC, HP,
and SGI, which would each have different sets of software and/or
configurations of operating parameters):

“At present, these machines are mostly Suns (currently being upgraded to
Solaris 2) and X terminals, but the ability to integrate systems from different
vendors is considered very important and DEC, HP, and SGI systems have all
previously been integrated into the network.... Only Suns are currently being
configured with Icfg, but is intended that the system be portable, presenting a
uniform interface to the configuration process across different platforms.” PP.
20-21.

storing in a database a model for
each different type of device
having a different respective set of
software and/or configuration of
operating parameters,

Anderson describes storing machine configuration information in a central
database. This configuration information is the “model” for each different type
of device: “All information that is necessary to distinguish one machine from
another is contained in the central database.” P. 21.

Request for Reexamination of U.S. Patent No. 7,124,289 Page 5

said model including a description
of software components installed
on a device and operating
parameter values for the software
components;

installing an agent on each device
that has the ability to manipulate

software components installed on
the device;

Anderson further teaches storing roles for machines that will have a different
configuration (e.g., name server, member of research group), and performing
“high-level” configuration, in which the roles determine the configuration:
“Ideally, we would like to describe the relationship between machines at a
much higher level and have the low level configuration information generated
automatically. For example:

e Machine A is the name server for the research group.

e Machine B is a member of the research group.

e Machine C is a member of the research group.
From the above specification, it is possible to generate all the necessary low
level configuration information to load the name-server software, and start the
name server subsystem, on machine A, and configure the other machines to act
as clients of this machine.” PP. 22-23.

Anderson’s stored information includes a description of software components
installed on a device: “Storing the machine-specific configuration information
explicitly in some external database (for example, sad[6]) is a major
improvement, since the configuration of a particular machine is always clear
and the information is always accessible, even when the machine is down.”
P.20

The Anderson model includes all information that is used to configure a
device: “All information that is necessary to distinguish one machine from
another is contained in the central database and every machine can be rebuild
or duplicated using just the information from the database together with the
generic system software.” P. 21.

Anderson describes a “script” installed on the device that reads a configuration
database and configures the device: “Every time the machine boots, a script
reads the configuration database to determine the subsystem that should be
configured on that machine. This executes a script for each subsystem (for
example, DNS or xntp) which consults the database for relevant parameters and
dynamically configures the subsystem accordingly.” P. 21.

The Anderson scripts are later described as running at boot time, manually, or
at regular intervals: “Provision is also made to execute these scripts manually,
or at regular intervals.” P. 22.

and transmitting messages, which
contain data from a given one of
said models, from said database to
agents on only those devices
which are associated with said
given model, to cause said agents
to manipulate operating
parameters of software
components on said devices in
accordance with said data.

Anderson states that a configuration file with the configuration for a machine
is provided to that machine using the NIS protocol: “[A]t present, a simple flat
file is used for each machine. The resources are distributed and supplied to the
client machines using NIS[8]. NIS is not ideal for this purpose, since it involves
propagation of the entire database every time a single change is made, and all
system software below the level of NIS must be statically configured. We hope
to eventually develop a special protocol that operates at a lower level, but NIS is
currently proving adequate as a resilient method of supplying machines with
the necessary resources.” P.21

Anderson also teaches an alternative implementation using a relational
database to extract information about groups of machines, and with data only
for a particular machine, although he describes it as unnecessary in this
implementation: “A large relational database might be a useful tool for
extracting information about machine configurations, and making complicated
changes to groups of machines....” P. 21

Request for Reexamination of U.S. Patent No. 7,124,289 Page 6

2. The method of claim 1, further
including the step of modifying a
model stored in said database,

and sending a message to all
devices associated with said
model to cause said agents to
reconfigure software components
in accordance with the change in
the model.

3. The method of claim 1,
wherein said messages are
transmitted by means of a gateway
that provides an interface between
the database and the devices,

Based on the configuration file, the devices can then update software and apply
patches for the software described in the configuration file for that machine.
The processes that are run manipulate the parameters of software components
on the devices: “A group of processes run every night to perform any necessary
updates to the local file-systems:

Updatelf uses | f u [9] to update the local filesystems with any
changes that have been made to the master copies of locally
maintained software. The configuration of this subsystem determines
the software packages that are to be carried by the machine.

patch applies any new systems patches that have been installed which
are relevant to the machine.

update makes any necessary modifications to files in the root file-
system to track the latest static configuration.

Most class scripts also accept additional arguments to stop and restart the
subsystem, and to display logging and status information.” P.22

Anderson contemplates modifications to the configuration information stored
in the central database, for example, adding a new subsystem to the
configuration: “New subsystems can therefore be incorporated in the
configuration process simply by adding their names to the database entry for a
specified machine”. P.21.

Anderson contemplates communicating changes to machines that have been
reconfigured: “The dynamic configuration allows machines to be reconfigured
very quickly to adapt to changing requirements, or work around failed
hardware”. P.21.

By changing the configuration in the central database, the machines are
configured: “The ease with which configurations can be changed, and
machines can be completely rebuilt, means that machine configurations do not
“‘rot”” and are always up-to-date.” P. 23.

Anderson describes the use of NIS protocol, which as a TCP/IP-based protocol,
could use a gateway to provide an interface between the database and the
devices: “The resources are distributed and supplied to the client machines
using NIS[8].” P. 21. NIS (formerly known as Yellow Pages or YP) was
developed by Sun Microsystems primarily to reduce the effort required to setup
and maintain a network of Unix workstations. The purpose of NIS is to
provide a distributed network database. See Hess.

and further including the step of
converting messages in said
gateway from a first protocol
associated with the database to a
second protocol employed by said
devices.

Anderson also teaches an alternative implementation using a relational
database to extract information about groups of machines, and with data only
for a particular machine, although he describes it as unnecessary in this
implementation: “A large relational database might be a useful tool for
extracting information about machine configurations, and making complicated
changes to groups of machines....” P. 21. It is inherent in an implementation
with a relational database to convert relational database requests (e.g., SQL) to
another protocol (e.g., NIS).

Request for Reexamination of U.S. Patent No. 7,124,289 Page 7

4. The method of claim 3,
wherein said second protocol
includes remote procedure calls.

5. The method of claim 4,
wherein said second protocol
comprises XML-RPC.

In addition, the conversion of messages to a first protocol to a second protocol
within a gateway is inherent in the operation of TCP/IP networks, upon which
NIS protocol runs. Moreover, the claim does not state that the first protocol
and the second protocol are different protocols. Thus, both the first protocol
and the second protocol could be NIS protocol.

In addition, Anderson itself teaches the use of a second, low-level protocol:
“We hope to eventually develop a special protocol that operates at a lower
level...” P.21.

The use of remote procedure calls is inherent in Anderson, which describes the
use of NIS: “The resources are distributed and supplied to the client machines
using NIS[8].” P. 21. NIS is based upon the Remote Procedure Call (RPC)
protocol which uses the External Data Representation

(XDR) standard. See Hess. Also, see Winer.

XML-RPC had not been developed at the time of Anderson. The use of XML-
RPC is a design choice, and it would have been obvious to select XML-RPC as
a communications protocol. XML-RPC was published in 1999 as a way to
encapsulate RPC in HTTP protocol requests. See Winer.

Anderson describes use of NIS (which as described above and in Hess uses
RPC/XDR) and the use of a relational database (which would typically
communicate using SQL protocol). Once XML-RPC was announced, it would
have been obvious use XML-RPC to transmit NIS messages. Also, see Winer.

6. The method of claim 1, further
including the step of recognizing
a change in configuration in one
of said devices, and modifying
said model in accordance with the
change in configuration.

Anderson describes recognizing installation and configuration of machines:
“The static part of the configuration occurs when a machine is installed.
Information is read from the database and used to construct auto-install
configuration files determining the type of machine, the layout of the disks, the
base software configuration, and other static parameters.” P. 21.

Anderson also describes validating the data on machines:
“The ability to validate and examine explicit machine configurations from the
database has reduced the number of errors that are caused...” P.23.

Anderson also describes modifying the model in accordance with the change in
configuration: “When the machine reboots for the first time after an
installation, a further script performs any remaining static configuration.” P.21.

“Every time the machine boots, a script reads the configuration database to
determine the subsystems that should be configured on that machine. This
executes a script for each subsystem (for example, DNS or xntp) which consults
the database for relevant parameters and dynamically configures the subsystem
accordingly. New subsystems can therefore be incorporated into the
configuration process simply by adding their names to the database entry for a
specified machine.” P.21.

In addition, Hideo, which was presented at the same conference as Anderson,
describes recognizing a change in configuration, the capturing of configuration

Request for Reexamination of U.S. Patent No. 7,124,289 Page 8

into a model (the Hideo repository), and moving the configuration from one
machine to another: “The repository can be placed on a different machine,
which means OMNICONF can save and restore a configuration of a machine to
and from another machine.” P. 30.

7. The method of claim 6, further
including the step of sending a
message to all other devices of the
same type as said one device,

which causes the agents in said
other devices to reconfigure
software components in
accordance with the change in the
model.

8. The method of claim 1, further
including the step of sending
messages from said database to
said devices

which cause said agents in said
devices to retrieve software
components from a source
external to said devices and install
said software components on the
devices.

Devices that are similarly configured have the same subsystems, and each
subsystem is updated using a class script: “Each configurable subsystem on a
machine (for example, a printer) is a member of a particular class and the
configuration for all subsystems in a class is performed by the same class
script.” P. 22.

Changes in configuration are then made on the systems: “[A] group of
processes runs every night to perform any necessary updates to the local file-
systems:
Updatelf uses | f u [9] to update the local filesystems with any
changes that have been made to the master copies of locally
maintained software. The configuration of this subsystem determines
the software packages that are to be carried by the machine.
patch applies any new systems patches that have been installed which
are relevant to the machine.
update makes any necessary modifications to files in the root file-
system to track the latest static configuration.

The messages sent to the devices update the configurations, which are used to
update the systems: “The resources are distributed and supplied to the client
machines using NIS[8].” P. 21.

Changes in configuration are then made on the systems:
“[A] group of processes runs every night to perform any necessary updates to
the local file-systems:
Updatelf uses | f u [9] to update the local filesystems with any
changes that have been made to the master copies of locally
maintained software. The configuration of this subsystem determines
the software packages that are to be carried by the machine.
patch applies any new systems patches that have been installed which
are relevant to the machine.
update makes any necessary modifications to files in the root file-
system to track the latest static configuration.

9. The method of claim 8, further
including the step of storing said
software components in a file
system, wherein said components
are classified into multiple roles
which respectively contain
different categories of software.

Anderson describes different roles for each machine (and its associated
software): “One of the most important aspects of machine configuration is to
specify the role of a machine within the network. ... Typically these will include
file services of various types (home directories, program binaries), name
service (DNS), time synchronization (xntp), font service, and others.”

P. 22.

In Anderson, the different machine roles will be implmented by subsystems of
software components: “Each configurable subsystem on a machine (for
example, a printer) is a member of a particular class and the configuration for
all subsystems in a class is performed by the same class script.” P. 22.

Subsystems on different systems can be controlled together: “This provides a

Request for Reexamination of U.S. Patent No. 7,124,289 Page 9

10. The method of claim 9,
wherein the categories of software
are determined in accordance with
the probable frequency with
which their respective
components are likely to be
changed during the service
lifetime of a device.

11. The method of claim 9,
wherein the model of a device is
stored in said database as one set
of software components from
each of said multiple roles.

central configuration database and a ‘‘framework’’ into which objects can be
slotted to control the various subsystems in a uniform way.” P.20.

In Anderson, master copies of software are stored on another machine, and
accessed using updatelf:
Updatelf uses | f u [9] to update the local filesystems with any
changes that have been made to the master copies of locally
maintained software. The configuration of this subsystem determines
the software packages that are to be carried by the machine. P. 21.

By dividing the software components into subsystems, Anderson inherently
stores the components in accordance with the probably frequency with which
their respective components are likely to be changed during the service lifetime
of the device.

In addition, Anderson describes different update timing frequency for different
subsystems: “The above subsystems run only when the machine boots, and any
change in the database resources is not reflected in the corresponding
subsystem until the machine is rebooted (or the subsystem is manually
restarted). These are mostly one-off configurations (such as auth) or daemons
which start once and run continuously (such as www and xdm). Some
subsystems need to be run at regular intervals (for example, backups) and the
boot subsystem can arrange to schedule these to run from cron. In particular, a
group of processes runs every night to perform any necessary updates to the
local file system[.]” P. 22.

The different subsystems in Anderson will include the operating system
software for a particular device, the various application system software, and
data content (e.g., machine name, and other configuration information.) For
example, the subsystems, which each have associated classes in the boot
script, include “auth,” and “amd,” which perform operating system
configuration, “dns” which includes application configuration and data
content, and “www,” which is an application:

“auth configures al the authorisation of access to the machine. This

controls, for example, the groups of users that are permitted to log in,

and the machines to be included in hosts.equiv file.

amd controls the amd automounter, specifying the cluster that is to

be used and hence determining the servers from which the various

file-systems will be mounted.

dns controls the type of DNS service to be provided and (where

appropriate) specifies the servers to be used.

www controls the World Wide Web server.” P. 22.

12. The method of claim 11,
wherein one of said roles includes
operating system software for the
devices.

13. The method of claim 12,
wherein another of said roles
includes application programs for
said devices.

See the discussion of claim 11. For example, the “auth” class is for operating
system configuration.

See the discussion of claim 11 above. For example, the “www” class is for
configuring an application program.

14. The method of claim 12,
wherein another of said roles

See the discussion of claim 11 above. For example, the “dns” class will use
data content such as the dns servers to be used.

Request for Reexamination of U.S. Patent No. 7,124,289 Page 10

includes data content associated
with the devices.

15. The method of claim 1,
wherein the step of transmitting
messages comprises the steps of
storing commands in a queue in
said database,

sending a first message containing
the first command in said queue,
awaiting a report from a device
that the first message has been
executed,

and sending the next command in
the queue in response to said
report.

These steps are inherent in the transmission of messages in Anderson, because
sending a first message, awaiting an acknowledgement, sending the next
command, would be implemented by any TCP-based protocol, and in
particular, any RPC protocol, including NIS: “The resources are distributed
and supplied to the client machines using NIS[8].” P. 21.

16. The method of claim 1,
wherein said agents have a level
of authority that enables them to
manipulate operating system
software installed on said devices.

Anderson teaches that the configuration scripts can access the root file system,
which is the level of authority required to manipulate operating system
software: ‘“‘update makes any necessary modifications to files in the root file-
system to track the latest static configuration.” P. 22.

17. A method for automatically
installing software components on
a plurality of computing devices
having different respective sets of
software, comprising the steps of:

Anderson was directed to automatically configuring software on a number of
different devices having different sets of software and configurations of
operating parameters.

The Abstract describes configuration of multiple machines: “This paper
presents a machine configuration system which stores all configuration
parameters in a central ‘‘database’’.... A permanent record of every machine
configuration is always available” P. 19.

The Anderson Introduction section describes setting configuration parameters:
“When a new machine is installed, it will rarely be used with the default
configuration supplied by the vendor of the operating system. The partitioning
and allocation of space on the disks, the software packages to be carried, and
the network name and address are typical configuration parameters that will be
set differently by different sites and for different machines at the same site.”
P19

Anderson teaches the use of “lcfg” on different platforms (from Sun, DEC, HP,
and SGI, which would each have different sets of software and/or
configurations of operating parameters):

“At present, these machines are mostly Suns (currently being upgraded to
Solaris 2) and X terminals, but the ability to integrate systems from different
vendors is considered very important and DEC, HP, and SGI systems have all
previously been integrated into the network.... Only Suns are currently being
configured with Icfg, but is intended that the system be portable, presenting a
uniform interface to the configuration process across different platforms.” PP.
20-21.

storing in a database a model for
each different type of device
having a different respective set of
software,

Anderson describes storing machine configuration information in a central
database. This configuration information is the “model” for each different type
of device: “All information that is necessary to distinguish one machine from
another is contained in the central database.” P. 21

Request for Reexamination of U.S. Patent No. 7,124,289

said model including a description
of software components installed
on a device;

Page 11

Anderson further teaches storing roles for machines that will have a different
configuration (e.g., name server, member of research group), and performing
“high-level” configuration, in which the roles determine the configuration:
“Ideally, we would like to describe the relationship between machines at a
much higher level and have the low level configuration information generated
automatically. For example:

e Machine A is the name server for the research group.

e Machine B is a member of the research group.

e Machine C is a member of the research group.
From the above specification, it is possible to generate all the necessary low
level configuration information to load the name-server software, and start the
name server subsystem, on machine A, and configure the other machines to act
as clients of this machine.” PP. 22-23.

Anderson’s stored information includes a description of software components
installed on a device:

“Storing the machine-specific configuration information explicitly in some
external database (for example, sad[6]) is a major improvement, since the
configuration of a particular machine is always clear and the information is
always accessible, even when the machine is down.” P.20

The Anderson model includes all information that is used to configuration a
device:

“All information that is necessary to distinguish one machine from another is
contained in the central database and every machine can be rebuild or
duplicated using just the information from the database together with the
generic system software.” P. 21

installing an agent on each device
that has the ability to install and
delete other software components
on said device;

Anderson describes a “script” installed on the device that reads a configuration
database and configures the device: “Every time the machine boots, a script
reads the configuration database to determine the subsystem that should be
configured on that machine. This executes a script for each subsystem (for
example, DNS or xntp) which consults the database for relevant parameters and
dynamically configures the subsystem accordingly.” P. 21

The Anderson scripts are later described as running at boot time, manually, or
at regular intervals:

“Provision is also made to execute these scripts manually, or at regular
intervals.” P. 22

and transmitting messages, which
contain data from a given one of
said models, from said database
to agents on only those devices
which are associated with said
given model, to cause said agents
to retrieve software components
from a source external to said
devices and install said software
components on the devices.

Anderson states that a configuration file with the configuration for a machine
is provided to that machine using the NIS protocol:

“[A]t present, a simple flat file is used for each machine. The resources are
distributed and supplied to the client machines using NIS[8]. NIS is not ideal for
this purpose, since it involves propagation of the entire database every time a
single change is made, and all system software below the level of NIS must be
statically configured. We hope to eventually develop a special protocol that
operates at a lower level, but NIS is currently proving adequate as a resilient
method of supplying machines with the necessary resources.” P.21

Request for Reexamination of U.S. Patent No. 7,124,289 Page 12

18. The method of claim 17,
wherein said messages are
transmitted by means of a gateway
that provides an interface between
the database and the devices,

Anderson also teaches an alternative implementation using a relational
database to extract information about groups of machines, and with data only
for a particular machine, although he describes it as unnecessary in this
implementation:

“A large relational database might be a useful tool for extracting information
about machine configurations, and making complicated changes to groups of
machines....” P. 21

Based on the configuration file, the devices can then update software and apply
patches for the software described in the configuration file for that machine.
The “master copy” of locally maintained software are external to the devices:

“A group of processes run every night to perform any necessary updates to the
local file-systems:

Updatelf uses | f u [9] to update the local filesystems with any
changes that have been made to the master copies of locally
maintained software. The configuration of this subsystem determines
the software packages that are to be carried by the machine.

patch applies any new systems patches that have been installed which
are relevant to the machine.

update makes any necessary modifications to files in the root file-
system to track the latest static configuration.

Most class scripts also accept additional arguments to stop and restart the
subsystem, and to display logging and status information.” P.22

Claim 18 is identical to claim 3. See the discussion of claim 3 above.

and further including the step of
converting messages in said
gateway from a first protocol
associated with the database to a
second protocol employed by said
devices.

19. The method of claim 18,
wherein said second protocol
includes remote procedure calls.

20. The method of claim 19,
wherein said second protocol
comprises XML-RPC.

Claim 18 is identical to claim 3. See the discussion of claim 3 above.

Claim 19 is identical to claim 4. See the discussion of claim 4 above.

Claim 20 is identical to claim 5. See the discussion of claim 5 above.

21. The method of claim 17,
further including the step of
storing said software

components in a file system,

Claim 21 is identical to claim 9. See the discussion of claim 9 above.

Request for Reexamination of U.S. Patent No. 7,124,289

wherein said components are
classified into multiple roles
which respectively contain
different categories of software.

Page 13

22. The method of claim 21,
wherein the categories of
software are determined in
accordance with the probable
frequency with which their
respective components are likely
to be changed during the service
lifetime of a device.

Claim 22 is identical to claim 10.

See the discussion of claim 10 above.

23. The method of claim 21,
wherein the model of a device is
stored in said database as one set
of software components from
each of said multiple roles.

Claim 23 is identical to claim 11.

See the discussion of claim 11 above.

24. The method of claim 23,
wherein one of said roles
includes operating system
software for the devices.

Claim 24 is identical to claim 12.

See the discussion of claim 12 above.

25. The method of claim 24,
wherein another of said roles
includes application programs
for said devices.

Claim 25 is identical to claim 13.

See the discussion of claim 13 above.

26. The method of claim 24,
wherein another of said roles
includes data content associated
with the devices.

Claim 26 is identical to claim 14.

See the discussion of claim 14 above.

27. The method of claim 17,
wherein the step of transmitting
messages comprises the steps of
storing commands in a queue in
said database, sending a first
message containing the first
command in said queue,
awaiting a report from a device
that the first message has been
executed, and sending the next
command in the queue in
response to said report.

Claim 27 is identical to claim 15.

See the discussion of claim 15 above.

28. The method of claim 17,
wherein each agent has a level of
authority that enables it to
manipulate operating system
software installed on said
devices.

Claim 28 is identical to claim 16.

See the discussion of claim 16 above.

Request for Reexamination of U.S. Patent No. 7,124,289

Page 14

SECOND SUBSTANTIAL NEW QUESTION OF PATENTABILITY:

FISK ANTICIPATES THE ‘289 PATENT

The ‘289 patent’s application date is October 31, 2000. Fisk was published in 1996, more

than one year before the ‘289 patent’s application date. Fisk is prior art to the ‘289 patent under
35 U.S.C. § 102 (b). The Fisk reference describes the system that Michael Fisk developed to

automate the administration of computers on heterogeneous networks. The chart below sets forth

an element-by-element comparison of claims 1-28 of the ‘289 patent to Fisk. In essence, every

element of each claim of the “289 patent was expressly taught or obvious in light of Fisk. As

such, each claim of the ‘289 patent is invalid and should be canceled.

‘289 PATENT

FISK

1. A method for automatically
configuring software on a
plurality of computing devices
having different respective sets
of software and/or
configurations of operating
parameters, to enable said
devices to perform
predetermined operations,
comprising the steps of:

Fisk was directed to automatically configuring software on a number of
different devices having different sets of software and configurations of
operating parameters.

In the Abstract, Fisk describes configuration and software installation on
multiple machines: “The areas of machine configuration and software
package installation and maintenance have been frequent areas of work in
recent years. This paper describes a hybrid system developed to address both
problems and more. The resulting system is designed to reduce the complexity
of the administration of a large network of computers down to that of the
administration of a few heterogeneous systems.” P. 181.

storing in a database a model for
each different type of device
having a different respective set
of software and/or configuration
of operating parameters,

Fisk has a machine database called machdb, which “defines all machine-
specific variables.” P. 183. “Each object can contain any number of of
variable/value pairs and can inherit from any number of other objects,
recursively. This technique allows a definition for a machine to consist of
only a few unique values such as IP and MAC address. All other values can
be inherited from other objects.” P. 183.

said model including a
description of software
components installed on a
device and operating parameter
values for the software
components;

“Each object can contain any number of of variable/value pairs and can
inherit from any number of other objects, recursively. This technique allows a
definition for a machine to consist of only a few unique values such as IP and
MAC address. All other values can be inherited from other objects.” P. 183.

installing an agent on each
device that has the ability to
manipulate software components
installed on the device;

The agent software is called gutinteg: “The main program, affectionately
called gutinteg, is also written in Perl.” P. 184. “The program probes a
machine for its MAC addresses using i fconfig and dmesg. The Machdb
entry for that MAC address is then loaded. Packagelink is then called to
install software on the machine.” P. 184

and transmitting messages,
which contain data from a given
one of said models, from said
database to agents on only those

Fisk describes propagating the configuration data to the client devices:
“Changes to configuration information should be made on a central server and
then propagated to the client. This is most robustly done by pushing
information to all reachable clients and by having all clients check the servers

Request for Reexamination of U.S. Patent No. 7,124,289

devices which are associated
with said given model, to cause
said agents to manipulate
operating parameters of software
components on said devices in
accordance with said data.

Page 15

periodically or at boot time.” P. 182

Fisk describes devices making the changes based on the configuration data:
“The program configures an already running machine by performing a partial
install.... The program probes a machine for its MAC addresses using
ifconfigand dmesg. The Machdb entry for that MAC address is then
loaded. Packagelink is then called to install software on the machine.” P. 184.

2. The method of claim 1,
further including the step of
modifying a model stored in said
database,

Fisk describes making changes to the configuration information: “Changes to
configuration information should be made on a central server and then
propagated to the client.” P. 182

and sending a message to all
devices associated with said
model to cause said agents to
reconfigure software
components in accordance with
the change in the model.

Fisk describes pushing information to the devices: “This is most robustly done
by pushing information to all reachable clients and by having all clients check
the servers periodically or at boot time.” P. 182.

3. The method of claim 1,
wherein said messages are
transmitted by means of a
gateway that provides an
interface between the database
and the devices,

Fisk describes the use of TCP/IP protocol, for example in the appendix, where
the systems are described as having TCP/IP addresses. All TCP/IP-based
protocols could use a gateway to provide an interface between the database
and the devices. Thus, the possible use of a gateway is implicit in Fisk.

and further including the step of
converting messages in said
gateway from a first protocol
associated with the database to a
second protocol employed by
said devices.

All gateways between two devices would have a first protocol associated with
a first device and a second protocol associated with a second device.

4. The method of claim 3,
wherein said second protocol
includes remote procedure calls.

The use of remote procedure calls is a design choice, which would be obvious
from the discussion in Fisk. P. 182 The ‘289 patent does not claim any
particular benefits from the use of RPC. Also see Winer.

5. The method of claim 4,
wherein said second protocol
comprises XML-RPC.

The use of XML-RPC is a design choice, which would be obvious from the
discussion in Fisk. P. 182 The ‘289 patent does not claim any particular
benefits from the use of RPC. Also see Winer.

6. The method of claim 1,
further including the step of
recognizing a change in
configuration in one of said
devices, and modifying said
model in accordance with the
change in configuration.

Fisk defines objects for different machines: “Objects can be defined for any
logical group of machines that share some configuration information.” P. 183.

Fisk describes making changes to the configuration information: “Changes to
configuration information should be made on a central server and then
propagated to the client.” P. 182

In addition, Fisk refers to Hideo’s OMNICONF, in which “changes are
supposed to be made on a sample workstation and the differences stored for
applications to other machines.” P. 182. Thus, it would have been obvious
from Fisk to add the functionality of Hideo, in order to recognize a change in
configuration in one of said devices, and include the change in the Fisk
model. Also see Hideo.

7. The method of claim 6,

Fisk describes propagating the configuration data to the client devices:

Request for Reexamination of U.S. Patent No. 7,124,289

further including the step of
sending a message to all other
devices of the same type as said
one device,

Page 16

“Changes to configuration information should be made on a central server and
then propagated to the client. This is most robustly done by pushing
information to all reachable clients and by having all clients check the servers
periodically or at boot time.” P. 182

which causes the agents in said
other devices to reconfigure
software components in
accordance with the change in
the model.

Fisk describes devices making the changes based on the configuration data:
“The program configures an already running machine by performing a partial
install.... The program probes a machine for its MAC addresses using
ifconfigand dmesg. The Machdb entry for that MAC address is then
loaded. Packagelink is then called to install software on the machine.” P. 184.

8. The method of claim 1,
further including the step of
sending messages from said
database to said devices

Fisk describes devices making the changes based on the configuration data:
“The program configures an already running machine by performing a partial
install.... The program probes a machine for its MAC addresses using
ifconfigand dmesg. The Machdb entry for that MAC address is then
loaded. Packagelink is then called to install software on the machine.” P. 184.

which cause said agents in said
devices to retrieve software
components from a source
external to said devices and
install said software components
on the devices.

Fisk describes the Packagelink program, which copies files from a remote
filesystem located an installation server that is external to the client: “In the
last two years, [Packagelink] has been expanded to build mirror filesystems by
building the target filesystem on a different machine than the packages reside
on and copying files instead of linking them....This method of operation is
used to build / on a machine from a set of packages on the installation server.”
P. 183

9. The method of claim 8,
further including the step of
storing said software
components in a file system,
wherein said components are
classified into multiple roles
which respectively contain
different categories of software.

Fisk describes the storage of the files in packages: “Therefore, the system is
built around a set of separate packages. Each package is the files necessary
for some logically discreet functionality.” P. 182.

10. The method of claim 9,
wherein the categories of
software are determined in
accordance with the probable
frequency with which their
respective components are likely
to be changed during the service
lifetime of a device.

By organizing the software components into packages, Anderson inherently
stores the components in accordance with the probably frequency with which
their respective components are likely to be changed during the service
lifetime of the device. Fisk’s examples of packages are “X11R6, Emacs, and
INN.” P. 182.

11. The method of claim 9,
wherein the model of a device is
stored in said database as one set
of software components from
each of said multiple roles.

In Fisk, each of the packages for a device are found on the installation server:
“This method of operation is used to build / on a machine from a set of
packages on the installation server.” P. 183.

12. The method of claim 11,
wherein one of said roles
includes operating system
software for the devices.

Fisk’s examples of packages are “X11R6, Emacs, and INN.” P. 182. X11R6 is
an operating system component. Fisk also states: “we have two different
versions of the Slackware package.” P. 183. Slackware is a distribution of the
Linux operating system.

13. The method of claim 12,
wherein another of said roles
includes application programs
for said devices.

Fisk’s examples of packages are “X11R6, Emacs, and INN.” P. 182. Emacs is
an example of an application program.

14. The method of claim 12,

According to Fisk, “a machine’s configuration can be completely represented

Request for Reexamination of U.S. Patent No. 7,124,289

wherein another of said roles
includes data content associated
with the devices.

Page 17

as the union of the correct set of files.” P. 182.

Fisk provides data content associated with devices, such as DNS files: “in
addition, we sensed the opportunity to use the same infrastructure to provide
the following functions that had also been identified as tasks that were overly
troublesome or redundant. “Maintain legal DNS files.” P. 181.

15. The method of claim 1,
wherein the step of transmitting
messages comprises the steps of
storing commands in a queue in
said database,

sending a first message
containing the first command in
said queue,

awaiting a report from a device
that the first message has been
executed,

and sending the next command
in the queue in response to said
report.

These steps are inherent in the transmission of messages in Fisk, because
sending a first message, awaiting an acknowledgement, sending the next
command, would be implemented by any TCP-based protocol.

In addition, Fisk explicitly describes prior art systems in which, “All
operations must be saved and applied to machines to insure proper
configuration.” P. 182.

16. The method of claim 1,
wherein said agents have a level
of authority that enables them to
manipulate operating system
software installed on said
devices.

Fisk describes using the system to install and upgrade operating system
software: “After partitioning and formatting disks, Gutinteg installs the
appropriate operating system package(s) and proceeds with the steps of a
partial installation.” P. 184.

Fisk’s examples of packages are “X11R6, Emacs, and INN.” P. 182. X11R6 is
an operating system component. Fisk also states: “we have two different
versions of the Slackware package.” P. 183. Slackware is a distribution of the
Linux operating system.

17. A method for automatically
installing software components
on a plurality of computing
devices having different
respective sets of software,
comprising the steps of:

Fisk was directed to automatically configuring software on a number of
different devices having different sets of software and configurations of
operating parameters.

In the Abstract, Fisk describes configuration and software installation on
multiple machines: “The areas of machine configuration and software
package installation and maintenance have been frequent areas of work in
recent years. This paper describes a hybrid system developed to address both
problems and more. The resulting system is designed to reduce the complexity
of the administration of a large network of computers down to that of the
administration of a few heterogeneous systems.” P. 181.

storing in a database a model for
each different type of device
having a different respective set
of software,

Fisk has a machine database called machdb, which “defines all machine-
specific variables.” P. 183. “Each object can contain any number of of
variable/value pairs and can inherit from any number of other objects,
recursively. This technique allows a definition for a machine to consist of
only a few unique values such as IP and MAC address. All other values can
be inherited from other objects.” P. 183.

said model including a
description of software
components installed on a
device;

The database includes a description of the software components associated
with a device: “Each object can contain any number of of variable/value pairs
and can inherit from any number of other objects, recursively. This technique
allows a definition for a machine to consist of only a few unique values such
as IP and MAC address. All other values can be inherited from other
objects.” P. 183.

Request for Reexamination of U.S. Patent No. 7,124,289

installing an agent on each
device that has the ability to
install and delete other software
components on said device;

Page 18

The agent software is called gutinteg: “The main program, affectionately
called gutinteg, is also written in Perl.” P. 184. “The program probes a
machine for its MAC addresses using i fconfig and dmesg. The Machdb
entry for that MAC address is then loaded. Packagelink is then called to
install software on the machine.” P. 184

and transmitting messages,
which contain data from a given
one of said models, from said
database to agents on only those
devices which are associated
with said given model, to cause
said agents to retrieve software
components from a source
external to said devices and
install said software components
on the devices.

Fisk describes propagating the configuration data to the client devices:
“Changes to configuration information should be made on a central server and
then propagated to the client. This is most robustly done by pushing
information to all reachable clients and by having all clients check the servers
periodically or at boot time.” P. 182

Fisk describes devices making the changes based on the configuration data:
“The program configures an already running machine by performing a partial
install.... The program probes a machine for its MAC addresses using
ifconfigand dmesg. The Machdb entry for that MAC address is then
loaded. Packagelink is then called to install software on the machine.” P. 184.

18. The method of claim 17,
wherein said messages are
transmitted by means of a
gateway that provides an
interface between the database
and the devices,

Claim 18 is identical to claim 3. See the discussion of claim 3 above.

and further including the step of
converting messages in said
gateway from a first protocol
associated with the database to a
second protocol employed by
said devices.

Claim 18 is identical to claim 3. See the discussion of claim 3 above.

19. The method of claim 18,
wherein said second protocol
includes remote procedure calls.

Claim 19 is identical to claim 4. See the discussion of claim 4 above.

20. The method of claim 19,
wherein said second protocol
comprises XML-RPC.

Claim 20 is identical to claim 5. See the discussion of claim 5 above.

21. The method of claim 17,
further including the step of
storing said software
components in a file system,
wherein said components are
classified into multiple roles
which respectively contain
different categories of software.

Claim 21 is identical to claim 9. See the discussion of claim 9 above.

22. The method of claim 21,
wherein the categories of
software are determined in
accordance with the probable
frequency with which their
respective components are likely
to be changed during the service
lifetime of a device.

Claim 22 is identical to claim 10. See the discussion of claim 10 above.

23. The method of claim 21,

Claim 23 is identical to claim 11. See the discussion of claim 11 above.

Request for Reexamination of U.S. Patent No. 7,124,289 Page 19

wherein the model of a device is
stored in said database as one set
of software components from
each of said multiple roles.

24. The method of claim 23,
wherein one of said roles
includes operating system
software for the devices.

Claim 24 is identical to claim 12. See the discussion of claim 12 above.

25. The method of claim 24,
wherein another of said roles
includes application programs
for said devices.

Claim 25 is identical to claim 13. See the discussion of claim 13 above.

26. The method of claim 24,
wherein another of said roles
includes data content associated
with the devices.

Claim 26 is identical to claim 14. See the discussion of claim 14 above.

27. The method of claim 17,
wherein the step of transmitting
messages comprises the steps of
storing commands in a queue in
said database, sending a first
message containing the first
command in said queue,
awaiting a report from a device
that the first message has been
executed, and sending the next
command in the queue in
response to said report.

Claim 27 is identical to claim 15. See the discussion of claim 15 above.

28. The method of claim 17,
wherein each agent has a level of
authority that enables it to
manipulate operating system
software installed on said
devices.

Claim 28 is identical to claim 16. See the discussion of claim 16 above.

Request for Reexamination of U.S. Patent No. 7,124,289 Page 20

THIRD SUBSTANTIAL NEW QUESTION OF PATENTABILITY:
THE ‘289 PATENT IS OBVIOUS OVER
FLETCHER AND COLLINS IN LIGHT OF ANDERSON

The ‘289 patent’s application date is October 31, 2000. Anderson was published in 1994,
more than one year before the ‘289 patent’s application date. Anderson is prior art to the ‘289
patent under 35 U.S.C. § 102(b). Fletcher was filed on June 24, 1997, prior to the filing date for
the ‘289 patent. Thus, Fletcher is prior art under 35 U.S.C. § 102(e). Collins was filed on
December 18, 1997, prior to the filing date for the ‘289 patent. Thus, Collins is prior art under 35
U.S.C. § 102(e).

On December 8, 2004, in the course of prosecution of the ‘289 patent, an Office Action was
mailed from the USPTO in which claims 1-14, 16-26, and 28 were rejected as anticipated by
Fletcher and claims 15 and 27 were rejected as obvious over Fletcher in view of Collins. In
response, in the Amendment mailed on May 9, 2005, the applicant amended claim 1 to recite that
the computing devices “hav[e] different respective sets of software and/or configurations of
operating parameters,” that a model is stored “for each different type of device having a different
set of software and/or configuration of operating parameters,” and transmitting messages ‘“which
contain data from a given one of the models” to agents on “only those devices which are
associated with said given model.” Likewise, claim 17 was amended to recite computing devices
“having different respective sets of software,” storing “in a database” a model for each “different”
type of device “having a different respective set of software,” and transmitting messages “which
contain data from a given one of said models,” from said database to said agents “on only those

devices which are associated with said given model.”

In the Amendment mailed on May 9, 2005, applicant’s counsel argued that Fletcher
“describes a system that is designed for a homogeneous, or nearly homogeneous set of end
systems,” and that because Fletcher “uses multicast advertisements to identify the latest version
of available software components,” that Fletcher is not practical “in a heterogeneous environment
where different devices may be provisioned with entirely different sets of software.” Amendment,
page 12. Applicant’s counsel further argued that Fletcher had “no disclosure of different devices

having different respective configurations for software and/or operating parameters, let alone the

Request for Reexamination of U.S. Patent No. 7,124,289 Page 21

storage of a respective model for reach in a database.” Amendment, P. 13 Applicants counsel
further argued, with reference to claim 1, that Fletcher “does not disclose the storage of a model
containing operating parameter values for software components, nor the use of such data by the
agents to manipulate operating parameters of software components on the devices.” Amendment,
P. 13. Following the Amendment, the Examiner withdrew the rejection, and cited other

references.

The Examiner, however, did not have the benefit of Anderson. Anderson, as described
above, describes a system that implements both software provisioning and operating parameter
value configuration in a heterogeneous environment. Anderson communicates different model
information to different devices. Where Fletcher took a multicast approach, Anderson uses the
NIS protocol to share model data with individual devices. At the time of the ‘289 patent, it
would have been trivial to one skilled in the art to modify Fletcher so as to individually
communicate a different model to different devices. The cost/benefit tradeoff of multicasting
versus transmitting individually to each device would have been obvious to one skilled in the art
who was aware of the Anderson approach, and no other changes in the operation of Fletcher’s

system would have been required to reach the invention claimed in the ‘289 patent.

Fletcher mentions, in its discussion of prior art update systems, products like Intel’s LAN-
desk, which Fletcher states “use a ‘push’ technology for updating that forces updating at the end
system, and which requires large database management resources to keep track of update
statistics such as which end-station received which update, and which end-station still needs to be
updated with which components, for example.” Fletcher, col. 4, lines 35-41. Thus, one skilled in
the art may have understood from Fletcher alone that it would be possible to modify Fletcher to
operate in a fashion that had a centralized database and that still had the other benefits of
Fletcher, albeit that Fletcher thought that the multicast approach was better. In view of
Anderson, which describes a system that takes the individual communication approach, and
discusses use of a relational database, it would have been clear to one skilled in the art that

Fletcher could be modified in such a manner.

It also should be noted, for the record, that Fletcher does contemplate a heterogeneous

network. The network described in Fletcher includes a variety of end system (ES) devices: “The

Request for Reexamination of U.S. Patent No. 7,124,289 Page 22

ESs may be familiar end-user data processing equipment such as personal computers,
workstations, and printers and additionally may be digital devices such as digital telephones or
real-time video displays. Different types of ESs can operate together on the same LAN.”
Fletcher, col. 1, lines 54-59. Fletcher also specifically states: “the method and apparatus of the
present invention may operate with a wide variety of types of network devices including
networks dramatically different from the specific examples illustrated in FIG. 1 and described
below.” Fletcher, col. 4, lines 65-66. The difference alleged by the applicant of the ‘289 patent
during prosecution was that Fletcher does not communicate different model information to
different types of devices. This alleged shortcoming, to the extent it wasn’t already obvious from

Fletcher itself, is shown in Anderson, as described above. The remaining rejections in the Office

Action mailed December 8, 2004 (“OA-2004") therefore should stand in light of Anderson.

The chart below sets forth an element-by-element comparison of claims 1-14, 16-26, and 28
of the ‘289 patent to Fletcher in light of Anderson, and claims 15 and 17 of the ‘289 patent to
Fletcher in light of Anderson and in light of Collins. Every element of each claim of the ‘289
patent was expressly taught by or is obvious in light of these references. As such, each claim of

the ‘289 patent is invalid and should be canceled.

‘289 PATENT

FLETCHER, ANDERSON, AND COLLINS

1. A method for automatically
configuring software on a
plurality of computing devices
having different respective sets
of software and/or
configurations of operating
parameters, to enable said
devices to perform
predetermined operations,
comprising the steps of:

The Dec. 2004 Office Action stated that Fletcher discloses a method and
apparatus for automatically configuring software to enable said devices to
perform predetermined operations. This is correct. Fletcher states: “The
present invention is a method and apparatus for automatic software updating
(ASU) in a LAN.” Col. 5, Lines 6-8. Fletcher also states: “the method and
apparatus of the present invention may operate with a wide variety of types of
network devices.” Col. 4, lines 65-66.

As described above, Anderson was directed to automatically configuring
software on a number of different devices having different sets of software and
configurations of operating parameters.

storing in a database a model for
each different type of device
having a different respective set
of software and/or configuration
of operating parameters,

The Dec. 2004 Office Action stated that Fletcher discloses storing a model for
each type of device in a database [ASU server].

Fletcher describes each agent (which may be on each different type of device)
periodically sending its current version information to the ASU server: “on an
intermittent basis, possibly initiated by a polling packet from the ASU server,
the ASU agents forward current version information regarding a subset or all
of their software components to an ASU server....” Col. 5, lines 17-19.
“According to an embodiment of the invention, an agent response to an ASU

Request for Reexamination of U.S. Patent No. 7,124,289

Page 23

server request is defined to indicate the current version level of all software
components in the ES.” Col. 9, lines 17-19. The ASU server stores the
responses as a model of what the device has and needs in a database: “The
ASU server receives update requests from the agents and sorts and aggregates
that information into a cohesive database.” Col. 7, lines 18-20. Fletcher
updates operating parameters at the time that updates are installed: “For ASU
components, proper Windows 95 registry entries are modified to reflect Auto
update status at the time that files are copied.” Col. 12, lines 62-64.

As mentioned above, Anderson describes storing machine configuration
information in a central database. This configuration information is the
“model” for each different type of device: “All information that is necessary to
distinguish one machine from another is contained in the central database.” P.
21 This information includes machine-specific configuration as well as
software installation and update information.

said model including a
description of software
components installed on a
device and operating parameter
values for the software
components;

Fletcher stores the versions that are available, and what is needed by each
device: “the ASU server receives requests from each agent and stores the
requests in table form, for example, with each file defining a column entry and
each requesting agent defining a row entry.” Col. 11, lines 48-51.

As mentioned above, Anderson’s stored information includes a description of
software components installed on a device: “Storing the machine-specific
configuration information explicitly in some external database (for example,
sad[6]) isa major improvement, since the configuration of a particular
machine is always clear and the information is always accessible, even when
the machine is down.” P.20

installing an agent on each
device that has the ability to
manipulate software
components installed on the
device;

Fletcher has an agent installed on the device: “[t]he invention includes two
types of primary components, the agents that reside in ESs [end systems] and
the ASU server...” Col. 7, lines 1-3.

The agents update the ES devices: “new files received by an ASU agent (at an
end system) are stored in one or more special update directories. These files
are copied to their respective directories when all requested files have been
received.” Col. 12, lines 58-62.

As mentioned above, Anderson describes a “script” running on the device that
reads a configuration database and configures the device. “Every time the
machine boots, a script reads the configuration database to determine the
subsystem that should be configured on that machine. This executes a script
for each subsystem (for example, DNS or xntp) which consults the database
for relevant parameters and dynamically configures the subsystem
accordingly.” P. 21 The Anderson scripts are later described as running at
boot time, manually, or at regular intervals: “Provision is also made to execute
these scripts manually, or at regular intervals.” P. 22

and transmitting messages,
which contain data from a given
one of said models, from said
database to agents on only those
devices which are associated
with said given model, to cause
said agents to manipulate

Fletcher describes sending the update files to each agent that needs a
particular update on an agent-by-agent basis, or concurrently to multiple
agents that need the same files, but in any event to only those devices that
need the update: “For example, the ASU server accesses the first column (file)
of the request table and sends that file in a point-to-point manner to each agent
requesting that file. The ASU server then proceeds to the next column (file)
that has at least one agent requesting that file and sends out that file to the

Request for Reexamination of U.S. Patent No. 7,124,289

operating parameters of software
components on said devices in
accordance with said data.

Page 24

requesting agents.” Col. 11, line 67 — Col. 12, line 2.

The Fletcher agents update the ES devices: “new files received by an ASU
agent (at an end system) are stored in one or more special update directories.
These files are copied to their respective directories when all requested files
have been received.” Col. 12, lines 58-62. Fletcher updates operating
parameters at the time that updates are installed: “For ASU components,
proper Windows 95 registry entries are modified to reflect Auto update status
at the time that files are copied.” Col. 12, lines 62-64.

As mentioned above, Anderson states that a configuration file with the
configuration for a machine is provided to that machine using the NIS
protocol: “The resources are distributed and supplied to the client machines
using NIS[8].” P.21. Based on the configuration file, the devices can then
update software and apply patches for the software described in the
configuration file for that machine, as described with respect to updatelf,
patch, and update. P. 22.

2. The method of claim 1,
further including the step of
modifying a model stored in said
database,

Updated versions of files are provided to the ASU Server by the ASU
Manager: “ ASU Mgr. allows a user to input and control the files to be
updated from an ASU server to the ASU agents. The files are provided to the
ASU Manager by a user, and the ASU manager, in turn, uses FTP (or some
other file transfer protocol) to transfer these files to ASU servers.” Col. 9, line
67 - Col. 10, line 4.

and sending a message to all
devices associated with said
model to cause said agents to
reconfigure software
components in accordance with
the change in the model.

Fletcher states that once the ASU Server has the updates, they are
communicated to the agents in due course: “Once the ASU server receives
the files, the ASU server may transfer the files to the ASU agents.” Col. 10,
lines 5-6.

3. The method of claim 1,
wherein said messages are
transmitted by means of a
gateway that provides an
interface between the database
and the devices,

In the Dec. 2004 Office Action, the Examiner stated that Fletcher discloses
messages transmission from server to devices in LAN and WAN networking
applications “by means of a gateway [63, bridge] that provides an interface
between the database [64, server] and the devices [50-52 a to d].” Para. 8.
These are further described in Fletcher as intermediate systems: “LAN
intermediate systems 60-63 are referred to as bridges or switches or hubs...”
Col. 1, lines 59-62.

and further including the step of
converting messages in said
gateway from a first protocol
associated with the database to a
second protocol employed by
said devices.

In the Dec. 2004 Office Action, the Examiner stated that Fletcher “discloses
the step of converting messages in said gateway from a first protocol
associated with the database to a second protocol employed by said devices.”
Para. 8. The specification describes the various protocols that are used on a
network at Col. 1, line 65 — Col. 2, line 15. In general, it is inherent for
gateways in a network such as shown in Fletcher FIG. 1 to convert packets
from one protocol to another.

4. The method of claim 3,
wherein said second protocol
includes remote procedure calls.

With respect to claims 4 and 5, the Dec. 2004 Office Action, the Examiner
stated that Fletcher “discloses the use of standardized communication
protocols [SNMP] for messaging between a first process means [ASU server]
and second process means [ES] with remote procedure calls [RMON, remote
monitoring and managing].” Para. 9.

5. The method of claim 4,
wherein said second protocol
comprises XML-RPC.

XML-RPC had not been developed at the time of Fletcher. It would have been
obvious, however, when XML-RPC was published, to use it with or instead of
the standard protocols described in Fletcher.

Request for Reexamination of U.S. Patent No. 7,124,289

6. The method of claim 1,
further including the step of
recognizing a change in
configuration in one of said
devices,

Page 25

Updated versions of files are provided to the ASU Server by the ASU
Manager: “ ASU Mgr. allows a user to input and control the files to be
updated from an ASU server to the ASU agents. The files are provided to the
ASU Manager by a user, and the ASU manager, in turn, uses FTP (or some
other file transfer protocol) to transfer these files to ASU servers.” Col. 9, line
67 - Col. 10, line 4.

and modifying said model in
accordance with the change in
configuration.

Fletcher states that once the ASU Server has the updates, they are
communicated to the agents in due course: “Once the ASU server receives
the files, the ASU server may transfer the files to the ASU agents.” Col. 10,
lines 5-6.

7. The method of claim 6,
further including the step of
sending a message to all other
devices of the same type as said
one device,

Fletcher describes sending the update files to each agent that needs a
particular update on an agent-by-agent basis, or concurrently to multiple
agents that need the same files, but in any event to only those devices that
need the update: “For example, the ASU server accesses the first column (file)
of the request table and sends that file in a point-to-point manner to each agent
requesting that file. The ASU server then proceeds to the next column (file)
that has at least one agent requesting that file and sends out that file to the
requesting agents.” Col. 11, line 67 — Col. 12, line 2. Devices of the same type
will have the same files, and so will be updated.

which causes the agents in said
other devices to reconfigure
software components in
accordance with the change in
the model.

Fletcher states that once the ASU Server has the updates, they are
communicated to the agents in due course: “Once the ASU server receives
the files, the ASU server may transfer the files to the ASU agents.” Col. 10,
lines 5-6.

8. The method of claim 1,
further including the step of
sending messages from said
database to said devices

The Dec. 2004 Office Action stated that “As to claim 8, Fletcher teaches the
step of sending messages [multicast requests, advertisemnt, broadcast] from
said database [ASU server] to said devices [50, 51, 52] which cause said
agents in said devices to retrieve software components [request upgrade
software component] from a source external [ASU server] to said devices and
install said software components on the devices [by ASU agent] [col. 9, lines
47-52, col. 10, lines 19-25, fig. 1]” Para. 12.

The Fletcher ASU server sends out messages to the devices: “The ASU server
uses multicast requests, or advertisements, to identify the latest version levels
for one or more components that are currently available.” Col. 10, lines 19-21.

which cause said agents in said
devices to retrieve software
components from a source
external to said devices and
install said software components
on the devices.

The Fletcher agents send messages which result in the receipt of components
from the ASU server: “an agent receives the broadcast information and
responds with the agent’s current version level of one or more software
components that were advertised by the ASU server. The ASU server then
compares the agent’s current version levels with the latest version levels of the
software components.” Col. 11, lines 1-6. The ASU server then sends out the
needed files: “once all components in the update directory have been
advertised and once all responses (version requests) have been received from
the agents, the ASU server sends out files....” Col. 11, lines 63-67.

9. The method of claim 8,
further including the step of
storing said software
components in a file system,
wherein said components are
classified into multiple roles
which respectively contain

Fletcher describes storing the components in a file system, for example, when
Fletcher talks about using FTP protocol to transfer files to ASU servers: “The
files are provided to the ASU Mgr. by a user, and the ASU Mgr. in turn uses
FTP (or some other file transfer protocol) to transfer these files to ASU
servers. Col. 10, lines 2-4.

Fletcher classifies the components into categories (e.g., ASU agent

Request for Reexamination of U.S. Patent No. 7,124,289

different categories of software.

Page 26

components, OS components and NIC drivers), which categories are used to
determine the components that will be broadcast for updates: “The ASU
server, in one embodiment, broadcasts out the latest version [of] one
component (e.g. from an update list of available ASU agent components, OS
components and NIC drivers received from the ASU manager) at a time with
unique ids. Col. 10, lines 22-25.

10. The method of claim 9,
wherein the categories of
software are determined in
accordance with the probable
frequency with which their
respective components are likely
to be changed during the service
lifetime of a device.

It is implicit in Fletcher that the categories described are each going to have a
different probably frequency with which their respective components are
likely to be changed: “The ASU server, in one embodiment, broadcasts out the
latest version [of] one component (e.g. from an update list of available ASU
agent components, OS components and NIC drivers received from the ASU
manager) at a time with unique ids. Col. 10, lines 22-25.

In addition, Anderson describes different update timing frequency for
different subsystems: “The above subsystems run only when the machine
boots, and any change in the database resources is not reflected in the
corresponding subsystem until the machine is rebooted (or the subsystem is
manually restarted). These are mostly one-off configurations (such as auth)
or daemons which start once and run continuously (such as www and xdm).
Some subsystems need to be run at regular intervals (for example, backups)
and the boot subsystem can arrange to schedule these to run from cron. In
particular, a group of processes runs every night to perform any necessary
updates to the local file system[.]” P. 22.

11. The method of claim 9,
wherein the model of a device is
stored in said database as one set
of software components from
each of said multiple roles.

The files on the ASU server determine the software components to be
provided to the devices: “ASU Mgr. allows a user to input and control the files
to be updated from an ASU server to the ASU agents.” Col. 9, line 67 — Col.
10, line 2.

12. The method of claim 11,
wherein one of said roles
includes operating system
software for the devices.

Fletcher describes operating system components: “The ASU server, in one
embodiment, broadcasts out the latest version [of] one component (e.g. from
an update list of available ASU agent components, OS components and NIC
drivers received from the ASU manager) at a time with unique ids. Col. 10,
lines 22-25.

13. The method of claim 12,
wherein another of said roles
includes application programs
for said devices.

Fletcher describes application program components (e.g., ASU agent
components): “The ASU server, in one embodiment, broadcasts out the latest
version [of] one component (e.g. from an update list of available ASU agent
components, OS components and NIC drivers received from the ASU
manager) at a time with unique ids. Col. 10, lines 22-25.

14. The method of claim 12,
wherein another of said roles
includes data content associated
with the devices.

Fletcher describes data content associated with the devices (e.g., NIC driver
components): “The ASU server, in one embodiment, broadcasts out the latest
version [of] one component (e.g. from an update list of available ASU agent
components, OS components and NIC drivers received from the ASU
manager) at a time with unique ids. Col. 10, lines 22-25.

15. The method of claim 1,
wherein the step of transmitting
messages comprises the steps of
storing commands in a queue in
said database,

sending a first message
containing the first command in
said queue,

As described in the Dec. 2004 Office Action, “Collins discloses a system and
method for transferring software and data from one computer to one or more
computer through network with installation agent established at each target
machine and software package that includes the software and installation
commands for installing the software is transferred to each target machine....It
would have been obvious to one of ordinary skill in art, having the teaching of
Fletcher and Collins before him at the time of invention was made, to modify
the packets of messages for automatically updating software components on

Request for Reexamination of U.S. Patent No. 7,124,289

awaiting a report from a device
that the first message has been

executed,

and sending the next command
in the queue in response to said
report.

Page 27

end system over network as disclosed by Fletcher to include installation
commands with software in the packages as taught by Collins in order to
obtain improved in speed, reliable, accurate and efficient method for
automatically updating electronic software and distribution [col. 1, lines 29-
37].” Para. 19.

In addition, these steps are inherent in the transmission of messages in
Fletcher, because sending a first message, awaiting an acknowledgement,
sending the next command, would be implemented by any TCP-based
protocol, and in particular, any TCP/IP protocol, including SNMP: “” P. 21

16. The method of claim 1,
wherein said agents have a level
of authority that enables them to
manipulate operating system
software installed on said
devices.

Fletcher states: “The mechanism is generalizable and may be used to
automatically update any number of components, but network and non-
network components, including system level (OS) software components.”
Col. 9, lines 7-11.

17. A method for automatically
installing software components
on a plurality of computing
devices having different
respective sets of software,
comprising the steps of:

The Dec. 2004 Office Action stated that Fletcher discloses a method and
apparatus for automatically configuring software to enable said devices to
perform predetermined operations. This is correct. Fletcher states: “The
present invention is a method and apparatus for automatic software updating
(ASU) in a LAN.” Col. 5, Lines 6-8. Fletcher also states: “the method and
apparatus of the present invention may operate with a wide variety of types of
network devices.” Col. 4, lines 65-66.

As described above, Anderson was directed to automatically configuring
software on a number of different devices having different sets of software and
configurations of operating parameters.

storing in a database a model for
each different type of device
having a different respective set
of software,

The Dec. 2004 Office Action stated that Fletcher discloses storing a model for
each type of device in a database [ASU server].

Fletcher describes each agent (which may be on each different type of device)
periodically sending its current version information to the ASU server: “on an
intermittent basis, possibly initiated by a polling packet from the ASU server,
the ASU agents forward current version information regarding a subset or all
of their software components to an ASU server....” Col. 5, lines 17-19.
“According to an embodiment of the invention, an agent response to an ASU
server request is defined to indicate the current version level of all software
components in the ES.” Col. 9, lines 17-19. The ASU server stores the
responses as a model of what the device has and needs in a database: “The
ASU server receives update requests from the agents and sorts and aggregates
that information into a cohesive database.” Col. 7, lines 18-20. Fletcher
updates operating parameters at the time that updates are installed: “For ASU
components, proper Windows 95 registry entries are modified to reflect Auto
update status at the time that files are copied.” Col. 12, lines 62-64.

As mentioned above, Anderson describes storing machine configuration
information in a central database. This configuration information is the
“model” for each different type of device: “All information that is necessary to
distinguish one machine from another is contained in the central database.” P.
21. This information includes machine-specific configuration as well as
software installation and update information.

Request for Reexamination of U.S. Patent No. 7,124,289

said model including a
description of software
components installed on a
device;

Page 28

Fletcher stores the versions that are available, and what is needed by each
device: “the ASU server receives requests from each agent and stores the
requests in table form, for example, with each file defining a column entry and
each requesting agent defining a row entry.” Col. 11, lines 48-51.

As mentioned above, Anderson’s stored information includes a description of
software components installed on a device: “Storing the machine-specific
configuration information explicitly in some external database (for example,
sad[6]) is a major improvement, since the configuration of a particular
machine is always clear and the information is always accessible, even when
the machine is down.” P.20

installing an agent on each
device that has the ability to
install and delete other software
components on said device;

Fletcher has an agent installed on the device: “[t]he invention includes two
types of primary components, the agents that reside in ESs [end systems] and
the ASU server...” Col. 7, lines 1-3.

The agents update the ES devices: “new files received by an ASU agent (at an
end system) are stored in one or more special update directories. These files
are copied to their respective directories when all requested files have been
received.” Col. 12, lines 58-62.

As mentioned above, Anderson describes a “script” running on the device that
reads a configuration database and configures the device. “Every time the
machine boots, a script reads the configuration database to determine the
subsystem that should be configured on that machine. This executes a script
for each subsystem (for example, DNS or xntp) which consults the database
for relevant parameters and dynamically configures the subsystem
accordingly.” P. 21 The Anderson scripts are later described as running at
boot time, manually, or at regular intervals: “Provision is also made to execute
these scripts manually, or at regular intervals.” P. 22

and transmitting messages,
which contain data from a given
one of said models, from said
database to agents on only those
devices which are associated
with said given model, to cause
said agents to retrieve software
components from a source
external to said devices and
install said software components
on the devices.

Fletcher describes sending the update files to each agent that needs a
particular update on an agent-by-agent basis, or concurrently to multiple
agents that need the same files, but in any event to only those devices that
need the update: “For example, the ASU server accesses the first column (file)
of the request table and sends that file in a point-to-point manner to each agent
requesting that file. The ASU server then proceeds to the next column (file)
that has at least one agent requesting that file and sends out that file to the
requesting agents.” Col. 11, line 67 — Col. 12, line 2.

The Fletcher agents update the ES devices: “new files received by an ASU
agent (at an end system) are stored in one or more special update directories.
These files are copied to their respective directories when all requested files
have been received.” Col. 12, lines 58-62. Fletcher updates operating
parameters at the time that updates are installed: “For ASU components,
proper Windows 95 registry entries are modified to reflect Auto update status
at the time that files are copied.” Col. 12, lines 62-64.

As mentioned above, Anderson states that a configuration file with the
configuration for a machine is provided to that machine using the NIS
protocol: “The resources are distributed and supplied to the client machines
using NIS[8].” P.21. Based on the configuration file, the devices can then
update software and apply patches for the software described in the

Request for Reexamination of U.S. Patent No. 7,124,289 Page 29

configuration file for that machine, as described with respect to updatelf,
patch, and update. P. 22.

18. The method of claim 17,
wherein said messages are
transmitted by means of a
gateway that provides an
interface between the database
and the devices,

Claim 18 is identical to claim 3. See the discussion of claim 3 above.

and further including the step of
converting messages in said
gateway from a first protocol
associated with the database to a
second protocol employed by
said devices.

Claim 18 is identical to claim 3. See the discussion of claim 3 above.

19. The method of claim 18,
wherein said second protocol
includes remote procedure calls.

Claim 19 is identical to claim 4. See the discussion of claim 4 above.

20. The method of claim 19,
wherein said second protocol
comprises XML-RPC.

Claim 20 is identical to claim 5. See the discussion of claim 5 above.

21. The method of claim 17,
further including the step of
storing said software
components in a file system,
wherein said components are
classified into multiple roles
which respectively contain
different categories of software.

Claim 21 is identical to claim 9. See the discussion of claim 9 above.

22. The method of claim 21,
wherein the categories of
software are determined in
accordance with the probable
frequency with which their
respective components are likely
to be changed during the service
lifetime of a device.

Claim 22 is identical to claim 10. See the discussion of claim 10 above.

23. The method of claim 21,
wherein the model of a device is
stored in said database as one set
of software components from
each of said multiple roles.

Claim 23 is identical to claim 11. See the discussion of claim 11 above.

24. The method of claim 23,
wherein one of said roles
includes operating system
software for the devices.

Claim 24 is identical to claim 12. See the discussion of claim 12 above.

25. The method of claim 24,
wherein another of said roles
includes application programs
for said devices.

Claim 25 is identical to claim 13. See the discussion of claim 13 above.

Request for Reexamination of U.S. Patent No. 7,124,289 Page 30

26. The method of claim 24,
wherein another of said roles
includes data content associated
with the devices.

Claim 26 is identical to claim 14. See the discussion of claim 14 above.

27. The method of claim 17,
wherein the step of transmitting
messages comprises the steps of
storing commands in a queue in
said database, sending a first
message containing the first
command in said queue,
awaiting a report from a device
that the first message has been
executed, and sending the next
command in the queue in
response to said report.

Claim 27 is identical to claim 15. See the discussion of claim 15 above.

28. The method of claim 17,
wherein each agent has a level of
authority that enables it to
manipulate operating system
software installed on said
devices.

Claim 28 is identical to claim 16. See the discussion of claim 16 above.

Request for Reexamination of U.S. Patent No. 7,124,289 Page 31

CONCLUSION

For the reasons set forth above, each claim of the ‘289 patent is invalid. PUBPAT

respectfully requests that the patent be reexamined ex parte and ultimately canceled in its

entirety.
January 12, 2007 /s/ Daniel Ravicher
Date Daniel B. Ravicher

Reg. No. 47.015

PUBLIC PATENT FOUNDATION, INC.
1375 Broadway, Suite 600

New York, NY 10018

Tel: (212) 796-0570

Fax: (212) 591-6038

www.pubpat.org

CERTIFICATE OF SERVICE

The undersigned certifies that a copy of this Request for Ex Parte Reexamination in its
entirety, including all accompanying documents, is being deposited with the U.S. Postal Service
as Priority Mail with Delivery Confirmation on the date of the signature below in an envelope
addressed to the attorney of record for the assignee of U.S. Patent No. 7,124,289 as provided for
in 37 C.FR. § 1.33(c):

Attn: Daniel C. Kloke, Esq.
CARR & FERRELL LLP
2200 Geng Road
Palo Alto, CA 94303

January 12, 2007 /s/ Daniel Ravicher
Date Daniel B. Ravicher

U.S.P.T.O. Reg. No. 47,015
PUBLIC PATENT FOUNDATION, INC.
1375 Broadway, Suite 600
New York, NY 10018
Tel: (212) 796-0570
Fax: (212) 591-6038
www.pubpat.org

	IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
	ATTACHMENT TO FORM PTO-1465
	REQUEST FOR EX PARTE REEXAMINATION
	CERTIFICATE OF SERVICE

